Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage.

نویسندگان

  • Matúš Dubecký
  • Nils G Walter
  • Jiří Šponer
  • Michal Otyepka
  • Pavel Banáš
چکیده

In numerous Gram-positive bacteria, the glmS ribozyme or catalytic riboswitch regulates the expression of glucosamine-6-phosphate (GlcN6P) synthase via site-specific cleavage of its sugar-phosphate backbone in response to GlcN6P ligand binding. Biochemical data have suggested a crucial catalytic role for an active site guanine (G40 in Thermoanaerobacter tengcongensis, G33 in Bacillus anthracis). We used hybrid quantum chemical/molecular mechanical (QM/MM) calculations to probe the mechanism where G40 is deprotonated and acts as a general base. The calculations suggest that the deprotonated guanine G40(-) is sufficiently reactive to overcome the thermodynamic penalty arising from its rare protonation state, and thus is able to activate the A-1(2'-OH) group toward nucleophilic attack on the adjacent backbone. Furthermore, deprotonation of A-1(2'-OH) and nucleophilic attack are predicted to occur as separate steps, where activation of A-1(2'-OH) precedes nucleophilic attack. Conversely, the transition state associated with the rate-determining step corresponds to concurrent nucleophilic attack and protonation of the G1(O5') leaving group by the ammonium moiety of the GlcN6P cofactor. Overall, our calculations help to explain the crucial roles of G40 (as a general base) and GlcN6P (as a general acid) during glmS ribozyme self-cleavage. In addition, we show that the QM/MM description of the glmS ribozyme self-cleavage reaction is significantly more sensitive to the size of the QM region and the quality of the QM-MM coupling than that of other small ribozymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supporting Information to Chemical Feasibility of the General Acid/Base Mechanism of glmS Ribozyme Self-Cleavage

Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055. Institute of Biophysics, Academy of Sciences of the Czech Republic, Král...

متن کامل

Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure

The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5'-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have est...

متن کامل

General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility.

The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that init...

متن کامل

Role of the Active Site Guanine in the glmS Ribozyme Self-Cleavage Mechanism: Quantum Mechanical/Molecular Mechanical Free Energy Simulations

The glmS ribozyme catalyzes a self-cleavage reaction at the phosphodiester bond between residues A-1 and G1. This reaction is thought to occur by an acid-base mechanism involving the glucosamine-6-phosphate cofactor and G40 residue. Herein quantum mechanical/molecular mechanical free energy simulations and pKa calculations, as well as experimental measurements of the rate constant for self-clea...

متن کامل

Ligand requirements for glmS ribozyme self-cleavage.

Natural RNA catalysts (ribozymes) perform essential reactions in biological RNA processing and protein synthesis, whereby catalysis is intrinsic to RNA structure alone or in combination with metal ion cofactors. The recently discovered glmS ribozyme is unique in that it functions as a glucosamine-6-phosphate (GlcN6P)-dependent catalyst believed to enable "riboswitch" regulation of amino-sugar b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biopolymers

دوره 103 10  شماره 

صفحات  -

تاریخ انتشار 2015